How Large Language Models Work takes you inside an LLM, showing step-by-step how a natural language prompt becomes a clear, readable text completion. Written in plain language, you’ll learn how LLMs are created, why they make errors, and how you can design reliable AI solutions. Along the way, you’ll learn how LLMs “think,” how to design LLM-powered applications like agents and Q&A systems, and how to navigate the ethical, legal, and security issues.
There is so much text in our lives, we are practically drowning in it. Fortunately, there are innovative tools and techniques for managing unstructured information that can throw the smart developer a much-needed lifeline. You'll find them in this book.
Taming Text is a practical, example-driven guide to working with text in real applications. This book introduces you to useful techniques like full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. You'll explore real use cases as you systematically absorb the foundations upon which they are built.
Written in a clear and concise style, this book avoids jargon, explaining the subject in terms you can understand without a background in statistics or natural language processing. Examples are in Java, but the concepts can be applied in any language.