Build Network Models for Pandemics you own this product

prerequisites
intermediate Python • basics of data science • basics of machine learning • basics of NetworkX
skills learned
reading in location recordings from a CSV file • determining geodesic distances between locations • implement a simple algorithm that computes a summary statistic of networked data
Alexander Jung
1 week · 8-10 hours per week · ADVANCED

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside
In this liveProject, you’ll use machine learning to construct a contact tracing network for COVID-19 using location recordings from smart phone data. You’ll read the location of infected individuals, and generate a contact network of individuals who have been within two meters. Once you’ve established this tracing system, you’ll implement a distributed algorithm that can compute the average infection rate for each connected component of the contact network.
This project is designed for learning purposes and is not a complete, production-ready application or solution.

project author

Alexander Jung
Alexander Jung is an assistant professor for machine learning at Aalto University in Finland. Prior to joining Aalto, he obtained a PhD in statistical signal processing from TU Vienna in 2012 and was a postdoc at TU Vienna and ETH Zurich. Alex leads the Aalto research group “Machine Learning for Big Data'' that studies the fundamental limits and efficient algorithms for machine learning from large distributed collections of data. His current research focus is on privacy preserving and explainable federated machine learning methods for big data over networks. Alex has developed some of the most popular courses at Aalto University. He was selected as the Teacher of the Year by the Department of Computer Science in 2018.

prerequisites

This liveProject is for Python data scientists interested in applying big data analytics to public healthcare. To begin this liveProject you will need to be familiar with the following:

TOOLS
  • Intermediate Python (declaring variables, loops, branches, debugging, importing modules)
  • Basics of Matplotlib
  • Basics of NumPy
  • Basics of GeoPy
  • Basics of NetworkX
TECHNIQUES
  • Basics of data science

features

Self-paced
You choose the schedule and decide how much time to invest as you build your project.
Project roadmap
Each project is divided into several achievable steps.
Get Help
While within the liveProject platform, get help from other participants and our expert mentors.
Compare with others
For each step, compare your deliverable to the solutions by the author and other participants.
book resources
Get full access to select books for 90 days. Permanent access to excerpts from Manning products are also included, as well as references to other resources.

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Build Network Models for Pandemics project for free